所有产品

和记娱乐特征值和特征向量的几何意义、计算及

  特征值和特征向量确实有很明确的几何意义,矩阵(既然讨论特征向量的问题,当然是方阵,这里不讨论广义特征向量的概念,就是一般的特征向量)乘以一个向量的结果仍是同维数的一个向量。因此,矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量。

  那么变换的效果是什么呢?这当然与方阵的构造有密切的关系,比如可以取适当的二维方阵,使得这个变换的效果就是将平面上的二维变量逆时针旋转30度。这时,我们可以思考一个问题,有没有向量在这个变换下不改变方向呢?可以想一下,除了零向量,没有其他向量可以在平面上旋转30度而不改变方向的,所以这个变换对应的矩阵(或者说这个变换自身)没有特征向量(注意:特征向量不能是零向量)。

  综上所述,一个变换(或者说矩阵)的特征向量就是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已。再想想特征向量的原始定义:

  可以很容易看出,cx是方阵A对向量x进行变换后的结果,显然cx和x的方向相同。而且x是特征向量的话,ax也是特征向量(a是标量且不为零),所以特征向量不是一个向量而是一个向量族。

  另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已。对一个变换而言,特征向量指明的方向才是很重要的,特征值不那么重要。虽然我们求这两个量时先求出特征值,但特征向量才是更本质的东西!特征向量是指经过指定变换(与特定矩阵相乘)后不发生方向改变的那些向量,特征值是指在经过这些变换后特征向量的伸缩的倍数。

  矩阵D的对角线元素存储的是A的所有特征值,而且是从小到大排列的。矩阵V的每一列存储的是相应的特征向量,因此V的最后一列存储的就是矩阵A的最大特征值对应的特征向量。

  性质1.n阶方阵A=(aij)的所有特征根为l1,l2,…, ln(包括重根),则

  性质3.若 l 是方阵A的一个特征根,x为对应的特征向量,则lm是Am的一个特征根,x仍为对应的特征向量。

  性质4.设 l1,l2,…, lm是方阵A的互不相同的特征值。和记娱乐xj是属于li的特征向量( i=1,2,…,m),则 x1,x2,…,xm线性无关,即不相同特征值的特征向量线

  m为方阵A的互不相同的特征值,x11,x12,…,x1,k1是属于l1的线性无关特征向量,……,xm1,xm2,…,xm,k1是属于lm的线性无关特征向量。则向量组 x11,x12,…,x1,k1,…, xm1,xm2,…,xm,k1也是线性无关的。即对于互不相同特征值,取他们各自的线性无关的特征向量,则把这些特征向量合在一起的向量组仍是线;对于任意一个矩阵,不同特征值对应的特征向量线性无关。

  对于实对称矩阵或埃尔米特矩阵来说,不同特征值对应的特征向量必定正交(相互垂直)。

  注:埃尔米特矩阵(Hermitian matrix)(又称“自共轭矩阵”)是共轭对称的方阵。埃尔米特矩阵中每一个第i行第j列的元素都与第j行第i列的元素共轭相等。