所有产品

和记娱乐矩阵可对角化的重要条件是什么?

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  2.如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重 复次数

  现在从矩阵对角化的过程中,来说说这个条件是怎么来的.在矩阵的特征问题中,特征向量有一个很好的性质,即Aa=λa.

  由于不同特征值对应的特征向量是线性无关的,那么P是可逆矩阵,将上面等式换一种描述就是A=P*B*P-1 ,这也就是A相似与对角阵B定义了.

  P是怎么构成的?P由n个线性无关的向量组成,并且向量来自A的特征向量空间.

  如果A由n个不同的特征值,1个特征值-对应1个特征向量,那么就很容易找到n个线性无关的特征向量,让他们组成P;

  但是如果A有某个λ是个重根呢?比如λ=3,是个3重根.我们 知道对应的特征方程(3I-A)x=0不一定有3个线个线性无关的解,那么A就不能对角化了,这是因为能让A对角化的P矩阵不存在.

  可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵P 使得 P1AP 是对角矩阵,则它就被称为可对角化的。

  如果 V 是有限维度的向量空间,则线性映射T : V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。

  可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,并通过简单的提升对角元素到同样的幂来把一个矩阵提升为它的幂。

  设M为元素取自交换体K中的n阶方阵,和记娱乐,将M对角化,就是确定一个对角矩阵D及一个可逆方阵P,使M=PDP-1。设f为典范对应于M的Kn的自同态,将M对角化,就是确定Kn的一个基,使在该基中对应f的矩阵是对角矩阵。

  矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。[2]在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

  将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

  2、如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重 复次数

  由于不同特征值对应的特征向量是线性无关的,那么P是可逆矩阵,将上面等式换一种描述就是

  如果A由n个不同的特征值,1个特征值-对应1个特征向量,那么就很容易找到n个线性无关的特征向量,让他们组成P。

  但是如果A有某个λ是个重根呢?比如λ=3,是个3重根.我们 知道对应的特征方程(3I-A)x=0不一定有3个线个线性无关的解,那么A就不能对角化了,这是因为能让A对角化的P矩阵不存在。

  可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P 1AP 是对角矩阵,则它就被称为可对角化的。

  如果 V 是有限维度的向量空间,则线性映射 T : V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。

  可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理: 它们的特征值和特征向量是已知的,并通过简单的提升对角元素到同样的幂来把一个矩阵提升为它的幂。

  知道合伙人教育行家采纳数:6324获赞数:31390江西师范大学数学教育专业毕业,2011年江西财经大学数量经济学硕士毕业 执教12年

  2.如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重 复次数

  由于不同特征值对应的特征向量是线性无关的,那么P是可逆矩阵,将上面等式换一种描述就是

  P是怎么构成的?P由n个线性无关的向量组成,并且向量来自A的特征向量空间.

  如果A由n个不同的特征值,1个特征值-对应1个特征向量,那么就很容易找到n个线性无关的特征向量,让他们组成P;

  但是如果A有某个λ是个重根呢?比如λ=3,是个3重根.我们 知道对应的特征方程(3I-A)x=0不一定有3个线个线性无关的解,那么A就不能对角化了,这是因为能让A对角化的P矩阵不存在.

  n阶方阵可进行对角化的充分必要条件是: n阶方阵存在n个线性无关的特征向量 推论:如果这个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵

  2、如果阶n方阵存在重复的特征值,则每个特征值的线性无关的特征向量的个数等于该特征值的重

  特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

  设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。