所有产品

如何理解矩阵特征值?

  关于特征值、特征向量可以讲的确实很多,我这里希望可以给大家建立一个直观的印象。

  先给一个简短的回答,如果把矩阵看作是运动,对于运动而言,最重要的当然就是运动的速度和方向,那么(我后面会说明一下限制条件):

  既然运动最重要的两方面都被描述了,特征值、特征向量自然可以称为运动(即矩阵)的特征。

  注意,由于矩阵是数学概念,非常抽象,所以上面所谓的运动、运动的速度、运动的方向都是广义的,在现实不同的应用中有不同的指代。

  下面是详细的回答,我会先从几何上简单讲解下特征值、特征向量的定义指的是什么,然后再来解释为什么特征值、特征向量会是运动的速度和方向。

  说明下,因为线性变换总是在各种基之间变来变去,所以我下面画图都会把作图所用的基和原点给画出来。

  从特征向量和特征值的定义式还可以看出,特征向量所在直线上的向量都是特征向量:

  其中有些值构成的矩阵没有画出特征空间,可能是因为它的特征值、特征向量是复数,也可能是不存在。

  我有一管不知道颜色的颜料,而且这管颜料有点特殊,我不能直接挤出来看颜色,只能通过调色来观察:

  因为反复混合之后,这管颜料的特征就凸显了出来,所以我们判断,这管颜料应该是蓝色。

  一般来说,矩阵我们可以看作某种运动,而二维向量可以看作平面上的一个点(或者说一个箭头)。对于点我们是可以观察的,但是运动我们是不能直接观察的。

  就好像,跑步这个动作,我们不附加到具体的某个事物上是观察不到的,我们只能观察到:人跑步、猪跑步、老虎跑步、......,然后从中总结出跑步的特点。

  就好像之前举的不能直接观察的颜料一样,要观察矩阵所代表的运动,需要把它附加到向量上才观察的出来:

  就像之前颜料混合一样,反复运用矩阵乘法,矩阵所代表的运动的最明显的特征,即速度最大的方向,就由最大特征值对应的特征向量展现了出来。

  顺便说下,对于复数的特征值、特征向量,在上面就没有画出特征空间,但可以观察到反复运用矩阵乘法的结果是围绕着原点在旋转。关于复数特征值和特征向量这里就不展开来说了。

  实际上历史也是这样,欧拉在研究刚体的运动时发现,有一个方向最为重要,后来拉格朗日发现,哦,原来就是特征向量的方向。

  下面讲解要用到矩阵乘法和相似矩阵的知识,我就不啰嗦了,可以参看:“从高斯消元法到矩阵乘法”、“如何理解矩阵乘法?”以及“相似矩阵是什么?”

  对于方阵而言,矩阵不会进行维度的升降,所以矩阵代表的运动实际上只有两种:

  我们来看看在几何上的表现是什么,因此相似矩阵的讲解涉及到基的变换,所以大家注意观察基:

  如果旋转前的基不正交,旋转之后变为了标准基,那么实际会产生伸缩,所以之前说的正交很重要。

  回到我们之前说的运动上去,特征值就是运动的速度,特征向量就是运动的方向,而其余方向的运动就由特征向量方向的运动合成。所以最大的特征值对应的特征向量指明了运动速度的最大方向。

  但是,重申一下,上面的推论有一个重要的条件,特征向量正交,这样变换后才能保证变换最大的方向在基方向。如果特征向量不正交就有可能不是变化最大的方向,比如:

  所以我们在实际应用中,都要去找正交基。但是特征向量很可能不是正交的,那么我们就需要奇异值分解了,这里就不展开了。

  说明下,如果大家把这个文章和之前提到的我写的“相似矩阵”的文章参照来看的话,“相似矩阵”那篇文章里面我把图像的坐标系换了,所以看着图像没有变换(就好像直角坐标系到极坐标系下,图像是不会变换的)。而这里我把图像的坐标系给旋转、拉伸了,所以看着图像变换了(就好像换元,会导致图像变换)。这其实是看待矩阵乘法的两种视角,是等价的,但是显示到图像上就有所不同。

  效果还可以,其实一两百个特征值之和可能就占了所有特征值和的百分之九十了,其他的特征值都可以丢弃了。