方阵A可逆的充要条件是

发布时间:2019-05-20 04:11

  在线性代数中,给定一个 n 阶方阵 A,若存在一 n 阶方阵 B 使得 AB = BA = In,其中 In 为 n 阶单位矩阵,则称 A 是可逆的,且 B 是 A 的逆阵,记作 A 。

  A 是可逆的、A 的行列式不为零、A 的秩等于 n(A 满秩)、A 的转置矩阵 A也是可逆的、AA 也是可逆的、存在一 n 阶方阵 B 使得 AB = In、存在一 n 阶方阵 B 使得 BA = In。

  矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。

  A的特征值全不为0;A的行列式A≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);A等价于n阶单位矩阵;A可表示成初等矩阵的乘积。

  齐次线 仅有零解;非齐次线性方程组AX=b 有唯一解;A的行(列)向量组线性无关;任一n维向量可由A的行(列)向量组线性表示。

  展开全部在线性代数中,给定一个 n 阶方阵 A,若存在一 n 阶方阵 B 使得 AB = BA = In,其中 In 为 n 阶单位矩阵,则称 A 是可逆的,且 B 是 A 的逆阵,记作 A 。

  A 是可逆的、A 的行列式不为零、A 的秩等于 n(A 满秩)、A 的转置矩阵 A也是可逆的、